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1 Introduction

Ranked distributions have long been a source of interest because of their mixture of sim-
plicity and complexity. Because they cover such a disparate range of data, the emphasis
by various authors has historically been on particular types of ranked distribution which
can be represented parametrically in various ways.

Zipf (1949) famously saw in the distribution of the commoner words in the English
language the pattern called Zipf’s Law, now often called the Zipf/Pareto Law in recogni-
tion of Pareto’s earlier work, Pareto (1896), on economics. Here, the governing equation
is Z(i) = K.(1/i), for some K the rôle of which is to normalise the distribution by bringing
the sum of the terms to 1; on the finite set i ∈ {1, . . . , N} this becomes

ZN(i) =
1

ΣN
j=1(1/j)

(
1

i
). (1)

Mandelbrot (1982) extended this (with different notation) to

ZN(i) =
(i+ V )−1/D

ΣN
j=1(j + V )−1/D

for some D,V.
Such equations cannot apply to all ranked distributions, and so describe only a subset

which will have special properties not held by all ranked distributions.
Rather than seeking to represent ranked distributions by closed, parametric equations,

a set-oriented approach will be taken by considering the set of all ranked distributions
(on a finite domain).

2 Notation and Terminology

Note: Because of problems with embedded fonts for the larger mathematical symbols

• The greek upper-case letter Σ is used instead of the summation sign

• The greek upper-case letter Π us used instead of the product sign

• Superscripts and subscripts are used instead of limits

• normal, line-height ( and ) have been used as brackets, wherever possible, instead
of larger brackets.

• the Daniell integral is represented by the summation (Σ) sign.

There are, however, still problems with some symbols, such as large brackets around
matrices.

Notation and terminology follow Lovegrove [2].
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Let R+ be the non-negative reals, and N+ be the non-negative integers. For N ∈ N let
XN = {1, . . . , N}. N is called the degree.

Let G(N) = {g|g : XN → N+}, H(N) = {h|h : XN → R+}, so G(N) ⊂ H(N). The
elements of H(N) are called histograms on XN and those of G(N) integer-valued
histograms, shortened to integrams, on XN . The histogram h is identified with the point
(h(1), . . . , h(N)).

We define the integram 0N by 0N : XN → N+ : i 7→ 0. Provided no ambiguity results,
we shorten this to 0.

If we roll a die and throw the number 2 then we have not only thrown a 2 once but have
also thrown 1, 3, 4, 5 and 6 zero times each. So we can think of ourselves as having
thrown the integram (0,1,0,0,0,0). Also, we have not actually thrown the number 2 but
have, rather, thrown the face labelled “2”. It will be very convenient to adopt notation
which associates the symbol “2” with (0,1,0,0,0,0).

We define ′′i′′N to be that integram (x1, . . . , xN) for which xi = 1 but xn = 0 otherwise;
for example, ′′2′′6 = (0, 1, 0, 0, 0, 0). It is usually possible to write ′′i′′ rather than ′′i′′N
without introducing ambiguity.

Let f : XN →]0, 1] be such that ΣN
i=1f(i) = 1. Then f is called a distribution on XN .

The set of all distributions on XN is denoted by S(N).

For f ∈ S(N) and h ∈ H(N), by fh is meant f(1)h(1)f(2)h(2) . . . f(N)h(N). We have
f

′′i′′N = f(i).

The Set of Ranked distributions of degree N is
R(N) = {r ∈ S(N)| r(1) > r(2) > · · · > r(N)} .

For h ∈ H(N), the sample size of h is ω(h) = ΣN
i=1h(i).

For h ∈ H(N), i ∈ XN , the Relative Frequency of i given h is RF (i|h) where

(h = 0) RF (i|h) =
1

N
;

(h 6= 0) RF (i|h) =
h(i)

ω(h)
.

and the Ranked Relative Frequency of i given h is

RRF (i|h) = ΣN
j=i

1

j
.RF (j|h) .

For g ∈ G(N), the Multinomial coefficient associated with g is

M(g) =
ω(g)!

ΠN
i=1g(i)!

.
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We have M(′′i′′) = 1.

For g∈G(N), h∈ H(N) and P ⊂ S(N) where P 6= ∅, we define

LP (g|h) = M(g)

∫
f∈P f

gfh∫
f∈P f

h

where
∫

is the Daniell integral.

LP (g|h) is called the likeliness, over P, of g given h. Since P, g or h will usually be clear
from the context, this terminology can normally be shortened by omitting appropriate
terms.

h is called the given histogram, g the required integram and P the underlying set. More
generally, any non-empty subset of S(N) is called an underlying set in S(N).

We have LP (0|h) = 1 for all (h,P). LP (g|0) is written as LP (g).

If P is a singleton set, P = {f}, then LP (g|h) = M(g)f g, which is denoted by
Pr(g|f, h): since this is independent of h the notation may be simplified to Pr(g|f);
however, the presence of the h, although technically unnecessary, can sometimes add
clarity.

Let V ⊂ S(N). Then the likeliness of V, over P and given h, is

LP (V |h) =

∫
V ∩P f

h∫
P
fh

.

For x ∈ [0, 1] let Vx = {f ∈ S(N)|Pr(g|f) < x}. Then LP (Vx|h) is the likeliness, over P
and given h, of the set of those f ∈ P for which Pr(g|f) < x. We denote this by
LP (Pr(g|f) < x|h). That is, in the text string ‘LP (V |h)’ we replace the symbol ‘V’ by
the definition of the set V.

The function [0, 1]→ [0, 1] : x 7→ LP (Pr(g|f) ≤ x|h) is the expected CDF of Pr(g|f).

Likewise, if 0 ≤ x0 ≤ x1 ≤ 1 then we define LP (Pr(g|f) ∈ [x0, x1]|h) to be LP (V |h)
where V = {f ∈ P |Pr(g|f) ∈ [x0, x1]}. By covering [0,1] by cells in this way, we obtain
an expected frequency distribution for Pr(g|f).
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3 Linear bijection S(N)→ R(N)

3.1 The mapping φN

Let AN be the square matrix

AN =


1/1

1/2 . . . . . . 1/N
1/2 . . . . . . 1/N

. . . . . . 1/N
. . . 1/N

1/N

 .
Being triangular with non-zero entries on its leading diagonal, AN is invertible; its

inverse is

A−1N =


1 −1

2 −2
. . . . . .

(N − 1) −(N − 1)
N

 .

Theorem 1. Let φN : S(N) → R(N) : f 7→ r where rT = ANf
T . Then φN is a linear

bijection.

Proof. The codomain of φN is well-chosen (that is, r ∈ R(N) ) since

i. AN is left stochastic, so r ∈ S(N);

ii. (∀i ∈ XN−1) r(i) =
1

i
f(i) + r(i+ 1) > r(i+ 1)

So r ∈ R(N).

φN is clearly linear. It is invertible, and therefore bijective onto its image Im[φN ],
because AN is invertible.

It remains to show that Im[φN ] = R(N), that is

(a) Im[φN ] ⊂ R(N) and

(b) R(N) ⊂ Im[φN ].

Since the codomain is well-chosen, we already have (a) so all that is left to show is
(b), that is that (∀r ∈ R(N))(∃f ∈ S(N)) r = φN(f).

Let r ∈ R(N) and then let f : XN → R be given by fT = A−1N rT . Then ANf
T = rT ,

so that r = φN(f) iff f is in the domain of φN , that is iff f ∈ S(N). We need to show
that:-

(A.) (∀i ∈ XN)f(i) > 0

(B.) ΣN
i=1f(i) = 1.
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We have 
f(1)
f(2)
...
...

f(N)

 =


1 −1

2 −2
. . . . . .

(N − 1) −(N − 1)
N




r(1)
r(2)
...
...

r(N)

 .
From the final row, we have f(N) = N.r(N) > 0. Otherwise, for i < N , we have
f(i) = i.[r(i) − r(i + 1)]. But r ∈ R(N) so r(i) > r(i + 1), that is r(i) − r(i + 1) > 0;
hence f(i) > 0. So we have (A.).

Also,ΣN
i=1f(i) = ΣN−1

i=1 f(i) + f(N) = ΣN−1
i=1 i.[r(i) − r(i + 1)] + N.r(N) = r(1) +

· · · + r(N). But r ∈ S(N) so r(1) + · · · + R(N) = 1. So we have (B.) and the result is
proved.

3.2 Geometric interpretation of φN

Figure 1(a) shows a ranked distribution, r ∈ R(N), as a bar chart consisting of N bars of
width 1. That is, the outlined area is subdivided into columns by means of vertical lines.
Column i has width 1 and area r(i) and therefore height r(i).

Figure 1: Column and Slice views

Figure 1(b) shows the same outlined area, but subdivided into slices by means of
horizontal lines. The areas of those slices define an f ∈ S(N), where f(i) is the area of
slice i. Since slice i has area f(i) and length i it has height f(i)/i.

Comparing Figures 1(a) and 1(b) gives r(i) =
1

i
f(i)+· · ·+ 1

N
f(N), that is r = φN(f).

As indicated in the Figure, we shall call Figure 1(a) the column view of r, and Figure
1(b) the slice view.
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3.3 Numerical generation of elements of R(N)

The algorithm used to generate r ∈ R(N) follows from the linear bijection.

• Use the algorithm given in Lovegrove [2] for S(N) to generate f ∈ S(N);

• Set r(N) =
1

N
f(N);

• For i = (N − 1), . . . , 1 put r(i) =
1

i
f(i) + r(i+ 1).

4 Likelinesses over R(N)

4.1 h=0

Since LS(N)(i) =
1

N
for all i, it follows immediately from Theorem 1 that

(∀i ∈ XN) LR(N)(i) =
1

N
(
1

i
+ · · ·+ 1

N
), (2)

a result that has previously been found [1] by using a geometric argument.
Graphs of some LR(N) are shown in Figure 2.

Figure 2: LR(N)(i) for various N

5 Reduction

We might sometimes want to analyse ranked data of an unknown degree or combine data
of differing degrees. The purpose behind reduction is to enable these to be done, albeit
with some loss of information, by reducing the degree to a smaller, but known, value.

Two types of reduction will be defined: S(M) reduction and R(M) reduction. S(M)
reduction is commonplace; it is being given principally for the sake of the notation but
also to give a context for R(M) reduction.
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5.1 S(M) Reduction

Let M ∈ XN . Let f ∈ S(N) and then let F ∈ S(M) be such that

(∀i ∈ XM) F (i) =
f(i)

ΣM
j=1f(j)

.

Then we shall call F the S(M) reduction of f. Denote this by F = πM(f).

5.2 R(M) Reduction

Define ηM = φMπMφ
−1
N and let r ∈ R(N). Then we shall call ηM(r) the R(M) reduction

of r.
Geometrically, ηM(r) is obtained from r by switching from column view to slice view

(φ−1N ), carrying out S(M) reduction on the slices (πM), and then switching back to column
view with the reduced number of slices (φM).

ηM(r) can also be interpreted as suppression of the Origin of the graph of r so that
the horizontal axis of the graph passes through (M+1, r(M+1)), together with the renor-
malisation necessary to bring the sum back to 1 (this renormalisation is carried out by
the πM).

SinceR(M) ⊂ S(M) we could apply S(M) reduction to r to remove r(M+1), . . . , r(N).
However, if we were to do so then the result would contain a ‘memory’ of the original
distribution, as shown in Fig 3a. R(M) reduction removes that memory whilst still
removing r(M + 1), . . . , r(N), as in Fig 3b.

Figure 3: Reduction of ranked distributions

The effect of retaining this ‘memory’ would be to flatten out the graph of the re-
duced r, that is to move r towards uniformity, that is towards LS(M). The reason is
purely arithmetic: for any given difference r(1)− r(M), the slope after reduction would
be less after S(M) reduction than under R(M) reduction because the presence of the
‘memory’ would mean that the normalisation process would involve division by larger
numbers (Figure 3a). Figure 4a shows the position of R(3) within S(3). Figure 4b then
shows the effect of S(3) reduction on a randomly-generated sample of elements of R(20):
the migration towards LS(3) is clear.
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(a) Position of R(3) in S(3) (b) Effect of S(3) reduction

Figure 4: Effect of S(3) reduction on elements of R(20)

6 Distribution of distributions

If likelinesses are to form a practical means for quantifying the informal concept of ”How
Likely Something is to Happen” then actual distributions need to be, at least approxi-
mately, uniformly distributed over the underlying set.

We would, for example, certainly like to know how distributions generally are dis-
tributed over S(N). This question, however, cannot be answered directly because of the
bias introduced by authors’ predilection for presenting data in ranked order.

Instead, we shall investigate how ranked distributions are distributed over R(N) for
some N. This then -because the fundamental linear bijection is invertible- implies the
answer to the question about S(N).

In attempting to carry out this investigation we might consider analysing a sample
of published elements of R(N). This would be made difficult, however, by the fact that
the degree of original data is often not specified, and might not even be known to the
original author.

To overcome this difficulty, we could take a sample of ranked data and carry out R(M)
reduction for some M.

A sample of 500 ranked distributions of degree at least 10 was collected from published
sources, and the R(9) reduction of each was found. The choice of 10 (and thence of the
R(9) ) was due to the popularity of ‘Top 10’ rankings in published data.

The selection criteria for inclusion in the sample were:-

• The basis of the ranking must have been quantified, and the quantified values given.

• Degree at least 10.

• The data to be a decreasing, rather than increasing, function of rank. As an im-
portant example, in athletics the faster the better so that smaller times rank above
larger: although results could be converted into ranked form by giving speeds rather
than times, no data was found where this had been done.
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• To eliminate, so far as was possible, bias on the part of this Author when carry-
ing out the selection, the data must have been ranked by the original author and
described as being ”Top 10”, ”Top 20”, ”Largest”, ”Most” etc or as ”ranked” and
given a rank number starting at 1.

One source of data was rejected because it was described as being ‘The Top Ten worst
cases’, which does not seem to be well-defined and, even if it were, would apparently
imply that the data actually formed the bottom ten. Otherwise, there was no selection
or rejection by subject matter or because of the actual values.

The ’no selection or rejection by subject matter‘ resulted in data being included which
would not normally be used in scientific analyses but which could not, and indeed should
not, have been eliminated. A small selection (not random) of the data sources is given
at the end of the References.

The means over all 500 R(9) reductions are compared with LR(9) in Table 1.

i= 1 2 3 4 5 6 7 8 9
Sample Mean 0.35 0.21 0.14 0.10 0.08 0.05 0.04 0.02 0.01

LR(9)(i) 0.31 0.20 0.15 0.11 0.08 0.06 0.04 0.03 0.01

Table 1: Means of ranked data compared with ranked likelinesses

Because they are readily plotted on a 2-dimensional page, the R(3) reductions were
also found: these are shown in Figure 5.

Figure 5: Distribution of R(3)-reductions of data

For i = 1, . . . , 9, the distributions of the R(9)-reductions of the sample are presented
in Figure 6, where they are compared with algorithmically-generated results for R(9).
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(a) Distribution of r(1) (b) Distribution of r(2) (c) Distribution of r(3)

(d) Distribution of r(4) (e) Distribution of r(5) (f) Distribution of r(6)

(g) Distribution of r(7) (h) Distribution of r(8) (i) Distribution of r(9)

Figure 6: Actual and theoretical distributions

7 Horse racing results

7.1 Wins by a favourite

Since LR(4)(1) =
1

4
{1

1
+ . . .

1

4
} = 0.52 > 0.5 > 0.46 =

1

5
{1

1
+ . . .

1

5
} = LR(5)(1) it follows

that, in a competition, the favourite is on average likely to win if there are precisely 4
competitors, but not if there are precisely 5.

Since LR(N)(1) is a strictly decreasing function of N, it follows that the favourite is
likely to win if there are 4 or fewer competitors, but not if there are 5 or more.

The Author collected the results of 30,000 UK horse races, taking the results from
various newspapers, teletext and web sites. The proportion of races won by the Favourite
is compared with LR(N)(1) in Figure 7a

7.2 Wins by a second favourite

The second favourite can never be likely to win.
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LR(N)(i), viewed as a function of N, is strictly decreasing only when i = 1. In the case
of second favourites (i = 2), we have LR(3)(2) = 0.28 > 0.25 = LR(2)(2), so the second
favourite is on average more likely to win if there are 3 competitors than if there are 2.

Not all of the sources used to provide the horse-race data in 7.1 indicated when a race
had been won by the second favourite. Those that did accounted for approximately half
(15,160) of the 30,000 results collected. For those 15,160 races, the proportion won by
the second favourite is compared with LR(N)(2) in Figure 7b.

7.3 Simulated results

Since, in the data used to produce Figures 7a & 7b, the number of races is known for
each degree (number of runners), it is possible to simulate the data by using the sampling
files produced by the Author’s program ’Great Likelinesses’. The results are shown in
Figures 8a & 8b.
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(a) Wins by favourites (b) Wins by second favourites

Figure 7: Actual wins by favourites and second favourites

(a) Simulated wins by favourites (b) Simulated wins by second favourites

Figure 8: Simulated wins by favourites and second favourites
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8 Discussion

Likelinesses are a perfect predictor of the mean of a set of relative frequencies if that set
of relative frequencies is concentric with the underlying set, P.

In practice, normal observational scatter would result in the two sets not being con-
centric even if in the limit, as the sample size increases, they would be. In addition, they
might not be concentric even in the limit.

How good a predictor the Likelinesses are then depends upon the distance between
the centres of the two sets. Strictly, it depends upon the vector joining them.

Even if the Likelinesses are judged to be a good predictor, it does not follow that the
relative frequencies are randomly distributed over P: they might, for example, be ran-
domly distributed over some circle which is concentric with P. The extent to which they
are, or are not, randomly distributed over P depends upon the distribution of the indi-
vidual relative frequencies, and how well that distribution compares with the distribution
which would be expected from the uniform distribution on P.

With some data sets the concept of individual ’relative frequencies’ is meaningless
since this requires repetitions, which are not always possible. Under these circumstances,
data can be collected, and relative frequencies found, only at the global, rather than
individual, level.

This is the case with horse races. If we could repeat a race, with the same runners and
riders under identical conditions then we might be able to find the relative frequencies
of wins by the favourite (second favourite, etc) for that race. Of course, we can do no
such thing; we can merely make a single observation of which horse won, and then collect
observations together at the global level -which is where the relative frequencies have to
be found. The theoretical background to ranked distributions gives us a way to do this
by defining an appropriate classification system.

Figure 7 seems to suggest that ranked likelinesses are, for horse races, a reasonably
good predictor of the relative frequencies of wins by the favourites and 2nd favourites.
Why this should be so is another matter. It certainly has interesting implications for the
handicapping and odds-setting systems, and -on the philosophical side- for the ‘wisdom
of crowds’.

The comparison of actual and simulated proportions of wins by favourites and second
favourites seems to be very good. It is certainly pleasing that the simulated results
replicate several details from the actual data. The most noteworthy of these is perhaps
the fairly sudden increase in scatter when the sample size (number of races) falls below
about 600. This suggests that 600 might be considered as the defining lower limit of
‘large sample’, but this would need verification from other scenarios.

The situation is different with the sample of 500 ranked distributions. Here, we do have
the individual distributions and so can compare the distributions of their individual values
with what would be expected on the assumption of a uniform distribution. Figure 6, which
does this, does suggest consistency with such an assumption, and is supported by the
R(3) reductions in Figure 5.

The distributions are, however, of arbitrary data so it should perhaps not be surprising
that, being arbitrary, they are random. It is hard to see how they could be otherwise.

On the theoretical side of things, the linear bijection is of importance because it lies
at the heart of the numerical generation of randomly-selected ranked distributions. This
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in turn is the basis for the numerical distribution of other types of distribution, such as
unimodal, bell-shaped, piecewise unimodal, step-down. So the linear bijection lies at the
heart of what is in effect a new subject area.

Another consequence of the linear bijection is that the form of the matrix AN implies
the importance of using R(M)-reduction rather than S(M)-reduction. Figure 4b and the
associated discussion make it clear that to use S(M)-reduction on ranked distributions
could be misleadingly incorrect.
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A Useful likelinesses

Likeliness Underlying set Integram Description Symbolic
LP (g) P g
0.75 R(2) ′′1′′ top of two (“likely”) LR(2)(

′′1′′)
0.61 R(3) ′′1′′ top of three LR(3)(

′′1′′)
0.52 R(4) ′′1′′ top of four LR(4)(

′′1′′)
0.50 S(2) ′′1′′, ′′2′′ either of two LS(2)(

′′1′′), etc
0.46 R(5) ′′1′′ top of five LR(5)(

′′1′′)
0.33 S(3) ′′1′′, ′′2′′, ′′3′′ any of three LR(3)(

′′1′′), etc
0.28 R(3) ′′2′′ middle of three LR(3)(

′′2′′)
0.25 R(2) ′′2′′ bottom of two (“unlikely”) LR(2)(

′′2′′)
0.11 R(3) ′′3′′ bottom of three LR(3)(

′′3′′)
0.07 R(4) ′′4′′ bottom of four LR(4)(

′′4′′)
0.04 R(5) ′′5′′ bottom of five LR(5)(

′′5′′)

Table 2: Milestone likelinesses

Degree Rank order, i
N 1 2 3 4 5 . . . N

1 1
2 0.75 0.25
3 0.61 0.28 0.11
4 0.52 0.27 0.146 0.063
5 0.46 0.26 0.156 0.090 0.040
6 0.41 0.24 0.158 0.103 0.061 0.028
10 0.29 0.19 0.143 0.110 0.085 . . . 0.010
12 0.26 0.18 0.134 0.106 0.085 . . . 0.010
30 0.133 0.100 0.083 0.072 0.064 . . . 0.0011
50 0.090 0.070 0.060 0.053 0.048 . . . 0.00040
100 0.052 0.042 0.037 0.034 0.031 . . . 0.00010
360 0.018 0.015 0.014 0.013 0.012 . . . 0.000008
500 0.016 0.0116 0.0106 0.0099 0.0094 . . . 0.000004

Table 3: Ranked likelinesses

18


