
LOVEGROVE MATHEMATICALS

GREAT LIKELINESSES

(Release B08)

USER MANUAL

R.Lovegrove

GREAT LIKELINESSES is a program for calculating likelinesses, that is for finding
best-estimates of probabilities. This is the manual for release B08, versions B08F
and B08C.

The recommended citation for this manual is

Lovegrove,R.,(2014),‘Great Likelinesses (release B08) User Manual’, Lovegrove Mathematicals,

London, November 2014

London
United Kingdom

November 2014
www.lovegrovemaths.co.uk loveroger1024@gmail.com

Contents

1 Introduction 3

2 There is no warranty 3

3 Versions 3
3.1 Changes implemented in this version . 3
3.2 Known Issues . 4

4 Basics 4

5 Using Spreadsheets 8

6 What you should do now 8

7 Running the program 9

8 Stopping 10

9 The underlying set 10
9.1 Components of the underlying set . 10
9.2 Fundamental types of underlying set . 10

9.2.1 Unstructured, S(N) . 10
9.2.2 Ranked, R(N) . 11
9.2.3 Reverse-ranked, RR(N) . 12
9.2.4 Step-down, SD(c,N) . 12
9.2.5 Ranked step-down RSD(c,N) . 12
9.2.6 High/Medium/Low, HML(c,d,N) 12
9.2.7 Ranked High/Medium/Low, RHML(c,d,N) 13
9.2.8 Unimodal, M(A to B,N) . 13
9.2.9 Bell-shaped, B(A to B,N) . 14
9.2.10 U-shaped, U(A to B,N) . 14
9.2.11 Multi-modal . 15
9.2.12 Reverse-ranked with unimodal slope 16
9.2.13 Ranked with ranked slope . 16
9.2.14 Ranked with unimodal slope . 16

10 Contractions 17

11 The given histogram 18
11.1 Basics of the specification . 18
11.2 Merge Blocks . 18

12 The required integram 19

13 Frequency distributions and CDFs 19

14 data.txt 20

1

15 results.csv 22

16 The Sampling files 23
16.1 Introduction . 23
16.2 CSV files . 24

16.2.1 Basic Style . 24
16.2.2 Advanced Style . 25

16.3 TXT files . 26

17 DEFAULTS.TXT 27

18 Odds and Ends 31

19 Troubleshooting 32

A Notation and Terminology 34

B The Algorithms 36
B.1 The commoner underlying sets . 36
B.2 Selection of f ∈ S(N) . 36
B.3 Selection of r ∈ R(N) . 37
B.4 Selection of f ∈ RR(N) . 37
B.5 Selection of f ∈ RSD(c,N) . 37
B.6 Selection of f ∈ SD(c,N) . 37
B.7 Selection of f ∈ RHML(c, d,N) . 37
B.8 Selection of f ∈ HML(c, d,N) . 37
B.9 Selection of f ∈M(m,N) . 37
B.10 Selection of f ∈M(A to B,N) . 38
B.11 Selection of f ∈ U(m,N) and f ∈ U(A to B,N) 38
B.12 Merge Blocks . 38
B.13 Using a distribution to generate a simulated observation 39
B.14 Expected frequency distributions and CDFs 39

C Standard analytically-solvable problems 39

2

1 Introduction

GREAT LIKELINESSES (the name is a pun on that of Charles Dickens’s novel Great
Expectations) is a program for calculating likelinesses, that is for finding best-estimates
of probabilities.

This is not a textbook about the theory of likelinesses. It is a guide to the use of the
program Great Likelinesses. A summary of the notation and terminology is given in
Appendix A; the algorithms are outlined in Appendix B.

2 There is no warranty

This program is currently under development, and is not intended to be used in any
situation where there are or might be deleterious consequences arising from that use.

There is no warranty of any form. For example, there is no warranty against failure of
the program, or against failure of the program to produce the correct result.

By using the program, you accept full responsibility for all the consequences of that use.
If you are not willing to accept that responsibility then do not use the program.

3 Versions

Release B08 comes in two versions: B08F, which is the full version, and B08C, which is
the classical version. The classical version is always released first, so the full version
might not be available yet.

In the full version, the degree is limited to a maximum of 102. In the classical version,
the degree is restricted to values which have some significance in the classical problems
to do with coins, dice and cards; these are 2,3,4,5,6,8,13,16,26,32,36,39,52 and 64.

3.1 Changes implemented in this version

• You can now opt to have just the basic data in the sampling files, with no group
totals etc.

• Bell-shaped distributions have been added to the main menu of fundamental types
of underlying set.

• High/Medium/Low distributions have been added.

• Three additional sampling files, with the same names as the current ones but in
TXT format, have been introduced to facilitate the production of data to be used
by other programs or in future versions of this one.

The nature of some of these changes is such that existing versions of
data.csv will be rendered unusablle.

3

3.2 Known Issues

General comments about over/underflow

The number-crunching involved really can push your computer to its limits. The
following should be avoided if possible:-

• High degree;

• Large number of iterations;

• Overly-complicated underlying set;

• Merge block(s)

• Given histogram with large sample size;

• Required integram with large sample size.

Any one of these, if taken to extremes, but especially any combination of more than
one, can cause a run-time error. If this should happen to you then you will probably
firstly want to reduce the number of iterations. Alternatively, or additionally:-

• You might consider reducing the degree, for example by measuring the
independent variable in larger units (eg. 2Kg rather than 1Kg).

• Ask yourself whether you really do need such a complicated underlying set. It is
very easy to impose far more conditions than you would ever dream of using with
a traditional closed, parametric analysis.

Due to interactions between the various items, it is not possible to give precise guidance
about the meanings of “High degree” etc. However, anything which increases the
chances that the program will encounter a term f(i)g(i)+h(i) where f(i) is very small but
g(i)+h(i) is large must be considered a bad idea.

If there is any chance that you might run into difficulties of this type then you should
use the sampling files, or some other technique, to model your observational or
experimental program before carrying it out.

4 Basics

Basic concepts

A coin is of degree 2; a die is of degree 6; a pack of cards is of degree 52. The degree is
the number of possibilities that something (tossing a coin; rolling a die; drawing a card)
may take. It is the number of classes in a classification system.

The possibilities/classes are labelled 1, 2, . . . , N where N is the degree.

4

Given a degree, we can always define a distribution with that degree, as in Table 1. For

a distribution f , each f(i) > 0 and
N∑
i=1

f(i) = 1.

i 1 2 3 4 5 6
f(i) 0.2 0.1 0.35 0.05 0.25 0.5

Table 1: Distribution of degree 6

Likewise, we can define an histogram of degree N, as in Table 2. Each h(i)≥ 0 and the
h(i) are not required to be integer-valued. If each h(i) is an integer then h is called an
integram (Table 3); an integram is just a special type of histogram. There are
circumstances where an integram, rather than just an histogram, is required.

i 1 2 3 4 5 6
h(i) 3.0 4.2 0 0.7 1.8 0

Table 2: Histogram of degree 6

i 1 2 3 4 5 6
h(i) 3 4 0 0 1 0

Table 3: Integram of degree 6

Note that an histogram may take values of 0, but a distribution may not. The most
important histogram is the zero integram, 0 = (0, 0, . . . , 0).

If f is a distribution and g is an integram, both of degree N, then the probability of g
given f is Pr(g|f) = M(g)f g, where M(g) is the multinomial coefficient associated with
g (see Appendix A), and f g = f(1)g(1) . . . f(N)g(N).

The best-estimate of something is its mean value. In order to have a mean value, there
must be a set of values to find the mean of. This program best-estimates Pr(g|f) so
there has to be a set of Pr(g|f) to find the mean of. We start with a set of
distributions, called the Underlying Set, calculate Pr(g|f) for each f in that set and
then find the mean of those.

The mean used is a weighted mean, where the weights depend upon available data in
the form of an histogram (called the given histogram). The actual formula used is

LP (g|h) = M (g)

∫
f∈P

f gfh∫
f∈P

fh
(1)

5

where P is the underlying set, h is the given histogram and LP (g|h) is the likeliness (see
Appendix A).

The expression for M(g) contains the product of factorials,
N∏
i=1

g(i)! (see Appendix A),

so each g(i) has to be integer-valued, so g has to be an integram. The weights, fh,
started life as Pr(h|f), that is M(h)fh, but the M(h) has cancelled since it appeared in
both the numerator and denominator of (1). The cancellation of the M(h) has taken
with it any need for h to be integer-valued so h may be an histogram rather than
specifically an integram.

In a few simple cases, the main ones of which are listed in Appendix C, the integrals on
the RHS can be evaluated theoretically.

Usually, however, a numerical approach is needed; that is what this program does. The
process is very simple: we replace the integrals by summations and the underlying set,
P, by a sample of points (ie. distributions) selected at random from P. That sample can
be surprisingly large: about a million points are often needed -the program defaults to
750,000- but 100 million or more can at times be necessary. It is only recently that
improvements in computer technology have made it possible for such large problems to
be tackled on home computers.

What the program does

The program:-

• Finds LP (g|h), and other standard likelinesses, by sampling from P.

• Keeps track of convergence as the sampling process proceeds.

• Produces a separate sample of distributions from P, and uses each as a generating
distribution to generate simulated observations.

• Calculates the best-estimate of the probability (ie. the likeliness) that
Pr(g|f) < xi for a selection of xi equally spaced across some interval specified by
the user. Likewise for Pr(1|f), . . . , P r(N |f). This is the likeliness equivalent of
building up a CDF.

• For each of the subintervals [xi, xi+1] calculates the Likeliness that Pr(g|f) lies in
that subinterval. This is the likeliness equivalent of building up a PDF.

It does this for an underlying set, P, chosen by the user from those listed in 9.2

In addition, the program can contract the underlying set onto any centre. It can also
handle merged data-blocks.

Files used

The files used are given in Table 4.

6

Filename Purpose
data.txt Keeps details of problem, for future editing

and/or use
results.csv Results, for viewing in spreadsheet
defaults.txt Various defaults, to personalise the program
sampling dis.csv Sample of distributions
sampling obs.csv Observations simulated by using the distri-

butions in sampling dis.csv
sampling rfs.csv Relative frequencies for the observations in

sampling obs.csv
sampling dis.txt simplified text version of sampling dis.csv
sampling obs.txt simplified text version of sampling obs.csv
sampling rfs.txt simplified text version of sampling rfs.csv
errlog.txt Keeps track of run-time errors
scratch1.txt, scratch2.csv Scratchpads for the program’s own use.

Table 4: Files produced by program

data.txt and results.csv

When you start a new problem, you type it in from the keyboard. Details are saved in
the file data.txt so that you do not have to type them in again on subsequent runs.

Results are sent to the file results.csv for viewing in a spreadsheet.

If you want to keep data.txt or results.csv then make a copy, under a different name, in
the usual way.

Countdown

While the program is carrying out an analysis, a countdown-to-completion is sent to the
screen so that you can see progress. The analysis is in two parts: a fast initial pass,
during which various items are roughly estimated so as to improve the efficiency of the
program, followed by a slower second pass during which likelinesses are found. During
the second pass, the countdown includes details of the estimated run-time: these
estimates will be thrown out if the computer is used for any other purpose while the
program is running.

Running from Windows

It is recommended that you run the program from within Windows rather than by
switching, firstly, to DOS. This is because the program can be so fast with simpler
analyses that the screen buffer cannot keep up and so forces the program to slow down
significantly. Windows has improved screen-buffering which largely overcomes this.

7

5 Using Spreadsheets

The .csv files have been designed to be viewed within a spreadsheet.

Open your spreadsheet by right clicking on the icon for the file you want to open and
selecting ‘open with’. You should then be offered the choice of programs to use to open
the file. Choose your favourite spreadsheet: you should then be offered a choice of
options defining how the spreadsheet is to interpret the file.

Microsoft Excel

As the separator, choose a comma (,). As the text delimiter, choose a double quote (”).
Do not choose to merge successive delimiters.

OpenOffice/Apache OpenOffice Calc

As the separator, choose a comma (,). As the text delimiter, choose a double quote (”).
Do not choose to merge successive delimiters. For versions 3.3 and later of Calc, select
‘detect special numbers’ (you will not be offered this option in earlier versions).

LibreOffice Calc

As the separator, choose a comma (,). As the text delimiter, choose a double quote (”).
Do not choose to merge successive delimiters. Select ‘detect special numbers’.

Lotus 1-2-3

Choose ‘Parse as CSV’. When the spreadsheet opens, it may seem that some of the
fields have been asterisked out: they have not -it’s just that the default column widths
are too small.

In all spreadsheets, when viewing results.csv, you might find it helpful to widen
Columns A and B.

6 What you should do now

1. Form a new folder to contain the files used by this program.

2. Transfer the .exe file and these notes into that folder.

3. Run the .exe file, and select item 999 from the opening menu. This will set up
various defaults.

You can now experiment with the program, to get a feel for what’s going on.

8

7 Running the program

To start the program, run the .exe file.

The opening screen gives you various options. If this is the first time that you have ever
run this version then you must choose option 999 in order to set up various defaults.

Figure 1: Opening screen

Otherwise, your choice will normally be between Option 1 if you are starting a
completely new problem, or Option 2 if you are repeating a previous problem or
running a modification of one.

To start a new problem, choose Option 1. You will then be asked a number of
questions, the answers to all of which will be numerical. For most of these, you will
develop standard answers which you will soon get used to giving very quickly; with
practice, your fingers will type most of the answers faster than you think of them.

9

If you choose Option 2 then the computer will just take over and run the problem,
giving you an on-screen progress report -which, for simpler problems, might flash past
so quickly that you are unable to read it.

8 Stopping

The program will normally come to a stop of its own accord. There are times, though,
when you might want to stop it prematurely.

You can choose ‘Stop’ from the opening menu. This will stop the program before it has
really started.

During data-input, when asked to answer ‘1 for YES or 2 for NO’ give one of the
emergency numbers 911 or 999. The program will interpret this as a request to stop.
However, data.txt will be partially written and will be unuseable; the next time you run
the program, you will have to input the whole of the problem from the keyboard.

Once the countdown has started, all you can really do is force a hard stop. If you are
running the program in Windows then it should be enough to close the window in
which it is running. Otherwise, try pressing CNTRL-C. Whichever method you use, the
program will be forced to stop immediately so it will not have the opportunity to close
any open files. As a result, some files might not be closed properly –which could mean
that you will need to restart your computer before you can use the program again. If
you are analysing confidential or sensitive data then you should delete scratch1.txt and
scratch2.csv manually.

9 The underlying set

9.1 Components of the underlying set

As a general rule, anything other than data (values of h(i) and g(i)) which has to be
stated in order to define the problem forms part of the definition of the underlying set.
Components include:-

• fundamental type

• degree

• contraction

• essential domains of modal distributions

• range of any mode

• whether modal distributions are bell-shaped

10

9.2 Fundamental types of underlying set

9.2.1 Unstructured, S(N)

S(N) is the set of all distributions of degree N.

There is no relationship between the f(i) other than the requirement that they sum to 1.
The fact that the domain, XN , is ordered is irrelevant.

(a) LS(29) (b) Individual distribution

Figure 2: Unstructured (general) distributions: S(29)

9.2.2 Ranked, R(N)

A distribution, f , is ranked if f(1) > f(2) > ... > f(N).

(a) LR(29) (b) Individual distribution

(c) LR(N)(i) for various N (semilog scales)

Figure 3: Ranked distributions

11

9.2.3 Reverse-ranked, RR(N)

The mirror-images of ranked distributions, these increase to the right:
f(1) < f(2) · · · < f(N).

9.2.4 Step-down, SD(c,N)

There is a c such that the function values below c are all greater than the function
values above c; that is, i ≤ c < k ⇒ f(i) > f(k).

(a) LSD(6,29) (b) Individual distribution

Figure 4: Step-down distributions: SD(6,29)

9.2.5 Ranked step-down RSD(c,N)

The same as stepdown except that, in addition, the functions values below c are ranked;
that is i < j ≤ c < k ⇒ f(i) > f(j) > f(k). c can be interpreted as a limit of
discrimination for a ranked distribution.

(a) LRSD(6,29) (b) Individual distribution

Figure 5: Ranked Step-down distributions: RSD(6,29)

9.2.6 High/Medium/Low, HML(c,d,N)

An HML distribution is a step distribution with two steps.

i 6 c < k 6 d < l⇒ f(i) > f(k) > f(l)

The degree must be at least 4.

12

(a) LHML(6,13,29) (b) Individual distribution

Figure 6: High/Medium/Low: HML(6,13,29)

9.2.7 Ranked High/Medium/Low, RHML(c,d,N)

A Ranked High/Medium/Low distribution is an HML distribution for which the ‘top
step’ is ranked.

i < j 6 c < k 6 d < l ⇒ f(i) > f(j) > f(k) > f(l)

(a) LRHML(6,13,29) (b) Individual distribution

Figure 7: Ranked High/Medium/Low: RHML(6,13,29)

9.2.8 Unimodal, M(A to B,N)

Each distribution has precisely one mode. The mode does not have to be the same for
every distribution used in the analysis, although it can be if so required. The program
asks for a range of i which the mode may take; the smallest value is A and the largest is
B. You will usually use one of two specific cases, here.

1. To use a specific mode, m say (Figure 8a has m=6), choose A=B=m. We then
write M(m,N) rather than M(m to m,N).

2. If A = 1 and B = N then M(A to B,N) becomes M(1 to N,N), which is written as
M(N) and is the set of all unimodal distributions of degree N (Figure 8b).

Despite the impression given by some mathematical texts, unimodal distributions are
not usually bell-shaped (see Figure 8a): any bell-shape is due to vagueness in the mode
(Figure 8b). You are offered the option to use only bell-shaped distributions, but you
should not usually accept this offer.

13

(a) LM(6,29)(i) (b) LM(29)(i)

Figure 8: Unimodal distributions

9.2.9 Bell-shaped, B(A to B,N)

The notation used to refer to bell-shaped distributions follows that for Unimodal
distributions, viz B(A to B,N), etc.

The definition used by Great Likelinesses is “An unimodal distribution for which
the absolute values of the first differences on either side of the mode are
unimodal.”

Figure 9a shows likelinesses over a set of Bell-shaped distributions, and Figure 9b shows
their first differences. The platykurtic shape of 9a is due to the longer tail of the first
differences on the right than on the left (because there is more room there).

(a) LB(30,100) (b) First differences

Figure 9: Bell-shaped distributions

9.2.10 U-shaped, U(A to B,N)

The logical dual of unimodal distributions, U-shaped distributions have a single ‘trough’
rather than a single ‘mode’. Otherwise, there is no difference between the two.

14

(a) LU(6,29)(i) (b) LU(29)(i)

Figure 10: U-shaped distributions

9.2.11 Multi-modal

The domain, XN , is covered by several (maximum, 9) ‘mini’ unimodal distributions,
which may overlap. Each mini unimodal distribution has its own essential domain,
which is extended to cover the whole of XN by using values of zero elsewhere.
The Multi-modal distribution is then built up from those mini unimodal distributions
by taking a linear combination of them. A linear combination needs weights: these are
not specified precisely but are, rather, specified by giving a set from which they are to
be selected; the program then selects them every time it is forming a distribution.

Figure 11: Multi-modal distributions: effects of different types of weights

15

The program labels the modes in the order in which their details are typed into the
computer, which need not be left-to-right and so gives you flexibility when defining the
problem. Figure 11 shows examples with weights selected from different sets, where the
details of the modes were typed into the program in the order 1-2-3-4-5-6.

If the degree is no more than 77 then a visual aide de memoire will appear on the
screen during data-input (Figure 12) to help you keep track of where your mini
unimodal distributions are. This is switched off if the degree is more than 77 since a
normal window would not be wide enough to contain it.

Figure 12: Multi-modal distributions: aide de memoire

9.2.12 Reverse-ranked with unimodal slope

(As the name suggests)

9.2.13 Ranked with ranked slope

(As the name suggests)

9.2.14 Ranked with unimodal slope

(As the name suggests)

16

10 Contractions

A contraction is a mapping of the form f 7→ q + α(f − q). These are useful for reducing
the size of the underlying set. α is the magnitude, and q the centre, of the contraction

Although the program gives you the opportunity just to type in the co-ordinates of the
centre, if the degree is large then this can involve a lot of typing, which will be boring as
well as increasing the chances of a typing mistake. The program therefore also gives you
the choice of several standard cases.

(a) M(3)

(b) Contraction centre
′′3′′+′′1′′

2 (c) Contraction centre
′′2′′+′′3′′

2

Figure 13: Two contractions of M(3)

A contraction might cause the underlying set to fail to be of the fundamental type
originally chosen; for example, the contraction of an unimodal distribution might not be
unimodal. Figure 13 shows M(3) together with two contractions of magnitude 0.6. In
Figures 13b & 13c, the shaded area, outside the boundary of M(3), shows the location
of those distributions which are not unimodal. The contraction in 13b causes a
significant number of distributions to move into this area and so fail to be unimodal. By
contrast, every distribution in 13c remains in M(3) and so is still unimodal.

17

11 The given histogram

11.1 Basics of the specification

The given histogram is specified in three parts, H1+H2+H3:-

1. H1 is specified as an histogram

2. H2 is specified as an ordered N’tuple of relative frequencies (which may be 0s)
together with a sample size. The program finds H2 by multiplying the two
together.

3. H3 is due to merge blocks, and will be discussed separately.

Because an histogram will usually consist mostly of zeroes, when giving H1 (also the
relative frequencies for H2), you specify a block about which you want to be asked, and
the program defaults values outside that block to zero.

To reduce errors, and also to make things easier for you, when you are specifying the
relative frequencies for H2 you do not have to make them sum to 1: the program will
normalise them for you.

11.2 Merge Blocks

Table 5 gives three examples of Merge blocks.

1-3 4 5 6 7 8
9 2 0 3 3 1

(a) Merge block at left

1 2 3 4 5 6-8
2 1 6 2 0 7

(b) Merge block at right

1-3 4 5 6-8
9 2 0 7

(c) Merge blocks at
both ends

Table 5: Merge blocks

Each consists of a number of columns which have been merged together so that the
detail has been lost of the entries in individual columns but the total of the entries is
still known.

In practice, when data is collected in batches it sometimes happens that some batches
contain a merge block but others do not. To cater for this, the program allows merge
blocks to be entered independently of H1 and H2, and to overlap their non-zero entries.

The degree is the number of columns that there would have been had the merging not
taken place; it is 8 in each of the tables in Table 5. This means that merge blocks
cannot be used as an artificial way to reduce the degree.

The use of Merge Blocks introduces such vagueness into a problem that the resulting
algorithms can be highly ill-conditioned. A significant increase in the number of

18

iterations will be needed, but will not necessarily improve convergence to an acceptable
extent; indeed, increasing the number of iterations could make convergence properties
worse rather than better. For this reason, Merge Blocks should be used with caution.

If there is no Merge Block then H1+H2 is the given histogram.

If there is a Merge Block, however, the situation is more complicated since the program
uses the information about the Merge Block to recreate the third histogram, H3. H3 is
created every time that a new distribution is selected from the underlying set and will
change as that distribution changes, so it is not possible to specify it. This
continually-changing nature of H3 is a significant component of the vagueness which is
introduced by the use of merge blocks.

12 The required integram

The required integram, g, is specified in the same way as is H1: by giving a block about
which you want to be asked, with values outside that block defaulting to zero.

The calculated Likeliness of g is shown on-screen as part of the countdown display. This
means that convergence can be monitored whilst the calculations are proceeding.

13 Frequency distributions and CDFs

The expected frequency distribution of Pr(g|f) can be useful as a predictor of the
distribution of relative frequencies. This will normally be concentrated in a fairly small
region around LP (g|f), so it would be inefficient to construct it over the whole of [0,1];
instead, we use a smaller interval to cover the range of interest, and then partition that
interval into cells.

The difficulty is that that range of interest cannot be chosen until the frequency
distribution has been constructed, but the frequency distribution cannot be constructed
until the range of interest has been chosen.

To get round this, the program carries out a quick first-pass through the iterations
during which it collects sufficient information to enable it to make a reasonable
first-estimate of the interval: which it then stores in data.txt. The intention is not to
‘get the interval right’, but, rather, to be able to present the user with enough
information to make a better choice to suit his/her own needs, modifying data.csv
accordingly.

To begin with, when choosing the intervals of interest you will not have the slightest
idea which ranges to specify, so you will leave it to the program to make a choice.
Sometimes it will get the range right; sometimes it will be totally wrong. Nonetheless,
the program will usually provide you with enough information to make a better second

19

guess, which you should use to edit data.csv before running the program again. With
experiece, you will rarely need to run the program 3 times.

14 data.txt

You may edit data.txt with any simple text editor: use of a wordprocessor is not
recommended.

You would edit data.csv if, for example, you wanted to change the values of some data
without having to retype the whole of the problem-specification.

There are two types of item in data.txt: structural and non-structural. Structural items
affect the layout of the remainder of data.txt; non-structural items do not. You are
strongly advised not to edit structural items because of the knock-on effects for the rest
of the file (which are usually not as easy to predict as might be thought).

Each item is preceded by a brief description. Descriptions of non-structural items are in
CAPITALS and are enclosed in square brackets [].

To help you find your way around, items in a block of similar items are usually preceded
by an indication of where you are, eg ‘h(11)’. These are not descriptions so the lower
case and the round brackets should not be taken as indicating a structural item: the
description is at the start of the block.

If you make a syntactical mistake whilst typing the details of a new problem then the
program can, and will, ask you to re-enter the information. If you make a syntactical
mistake when editing data.txt, however, then the program cannot ask you to re-enter
the information, because the program will not be running. The first you will know of
the mistake is when you subsequently try running the program and a run-time error
occurs; details of this will be sent to the screen and to the file errlog.txt. Behaviour is
similar to that of a compiler: the error might not be picked up immediately and the
reported form of the error might not be the actual form.

The contents of data.txt are in a standard layout chosen to make subsequent editing as
easy as possible, and so are not simply a repetition of your typing. The basic idea is
that it is easier -and less error-prone- to alter an existing value than it is to insert an
omitted value, so everything is specifically given and nothing is implied. Examples are:-

– When specifying an histogram, you give a block about which you wish to
be asked, and the program defaults values outside that block to zero.
Regardless of which block you specify, the block stored in data.txt always
runs from 1 to N and the defaulted zero values are all specifically given.

– When specifying the subintervals to be used for the calculation of cdfs and
pdfs, you are asked whether you want to specify them yourself or whether
you want to leave that to the program. Regardless of how you reply,

20

data.txt always contains the answer ‘do it myself’ followed by the intervals
the program has chosen or were selected by you.

– Regardless of whether or not you say that you want to use a contraction,
the program always gives you one, albeit one which has no effect because it
has a magnitude of 1. So the answer to the question ‘Do you want to use a
contraction?’ is always stored as ‘1’ for ‘YES’, followed by the centre and
magnitude of a contraction. If you say that you do want a contraction then
the stored details will be as specified by you. If you say that you do not
want a contraction then the magnitude will be 1 (and you don’t have to
worry about where the centre is, because the contraction will have no effect).

– When specifying the centre of a contraction, you are given the choice
between various standard cases and specifying all the co-ordinates yourself.
Regardless of how you reply, data.txt contains the answer ’specify them
myself’, followed by all the co-ordinates.

The two things you will most often want to alter are (a) the number of iterations and
(b) the subintervals used for the calculation of distributions. For convenience, these
have been placed together, and are preceded by a line of asterisks across the screen,
terminating with the words FREQUENT CHANGES HERE (Figure 14).

Figure 14: Position of commonest changes

21

15 results.csv

results.csv is in the form of various tables, as below.

Table 1: Input Data

This Table summarises the data as input by you.

If you are not using any Merge blocks, then each will be shown as ‘not used’. For any
Merge block that you are using, the column ‘size’ will show the number of observations
you have specified for that block, and the extent of the block will be shown by the fields
that have been ‘asterisked out’.

If you are not using a contraction then the row ‘contraction’ will show a contraction of
size 1 and centre ′′1′′. If you are using a contraction, then its size and centre will be as
specified by you.

Table 2: Random selection of 25 distributions

For convenience, either for your own interest or for use when writing a presentation,
this section shows a random selection of 25 distributions. Also shown is Pr(g|f).

Table 3: Convergence of Likelinesses

This table shows convergence of the calculated likelinesses as the iterations proceed.
Plotted points are concentrated towards the beginning and end of the iterative process.

Figure 15: Example of the convergence of calculations

This table gives a very good indication of whether or not enough iterations had been
used; it should always be checked, as a matter of routine.

22

Table 4: Likelinesses

This will be the main table of interest: it gives the likelinesses of the standard
integrams (the required integram, g, and each of the integrams ′′i′′).

It also shows the Multinomial Consistency, which is an indication of how well the
likelinesses obey the Multinomial Theorem. This will usually be just for the purposes of
reporting, since the program itself makes use of the Multinomial Theorem unnecessary.

Tables 5 & 6: Frequency and Cumulative distributions

The program partitions each range of interest (see Section 13) into 20 subintervals and
finds the likeliness that Pr(g|f) or Pr(i|f), as appropriate, is in each of those
subintervals. The results are output as Table 5, which consists of a number of small
tables, one for each of the standard integrams. The centres of the cells have been
included to make graph-plotting easier.

The cumulative sums of the likelinesses in each of the sub-tables of Table 5 are then
formed, to give the best-estimated CDF for Pr(g|f) and for each Pr(i|f). These are
output as Table 6.

16 The Sampling files

16.1 Introduction

Every time the program is run, it forms six files which are called the sampling files.
These come in two sets of three: three in CSV format and three in TXT format, as in
Table 6.

Filename Content
sampling dis Sample of distributions
sampling obs Observations simulated by using the distributions

in sampling dis as generating distributions.
sampling rfs Relative frequencies for the observations in sam-

pling obs

Table 6: The three types of sampling files

The three in CSV format are intended to be used in a spreadsheet; the three in TXT
format are intended to be read as data by some other program, possibly a future version
of this one.

How many distributions there are, and how many simulated observations there are per
distribution, are controlled by altering the appropriate values in the file
DEFAULTS.TXT.

23

In each of the CSV files, the data is divided into groups by blank lines. Two styles of
CSV file are available: Basic and Advanced. Group-level data is included in Advanced
Style, but not in Basic Style. The User chooses which style to use by setting the
appropriate value in DEFAULTS.TXT .

The TXT files are just solid blocks of data, separated by spaces, with no groups.

Many users will not have any need for the sampling files, but for those who do they can
be the most valuable part of the program. If a sample of distributions is needed just to
show what distributions look like, eg in a report, then it should be remembered that
results.csv contains a sample of 25 distributions intended for that purpose.

Great Likelinesses does not place an upper limit on the number of distributions which
may be produced. However, the user’s spreadsheet might: an older spreadsheet might
have a maximum of about 65,000 rows. A more modern spreadsheet will normally cater
for more than 1 million rows.

16.2 CSV files

Each CSV file is split into groups (Figures 16,17), the size of which is set in defaults.txt.

The CSV files are useful in modelling and in the design of experiments. Think of each
row as representing the results of a test, where each test consists of a number of
observations. Each group represents the results of an experiment, where each
experiment consists of a number of tests. The whole file consists of a number of
repetitions of an experiment, and shows the variation which might be expected.

16.2.1 Basic Style

In Basic Style, the files contain (Figure 16) basic data, split into groups by blank lines.

There is an initial column containing either # or ##, depending on whether or not the
line contains data: this is to aid navigation and sorting within a spreadsheet. There
then follows Pr(g|f). The remainder of the line is as in Table 7.

Filename Basic Content
sampling dis The values of a distribution: f(1),. . . , f(N)
sampling obs Observations simulated by using the corresponding

distribution in sampling dis as a generating distri-
bution.

sampling rfs Relative frequencies for the observations in sam-
pling obs

Table 7: The contents of the CSV sampling files (Basic Style)

24

(a) sampling dis.csv (b) sampling obs.csv

(c) sampling rfs.csv

Figure 16: Sampling CSV files - Basic Style

16.2.2 Advanced Style

At the top of the file, there is an initial header area, giving basic information about how
the groups have been set up.

Thereafter, each line (Figure 17) starts with a status field, which says what that line is
all about. By sorting on this, a file can be split into its various components of
individual results, group sums/averages and grand total.

The first three characters of the status field correspond to the name of the file (DIS,
OBS,RFS) and say what the line contains (distributions, observations, relative
frequencies). The next three characters (IND,GRP,CUM) give the level of the data
(individual, group, cumulative-so-far).

The next column enumerates the individual data or, in the case of group or cumulative
data, contains the words ‘Group’ or ‘Overall’. The contents of these lines are shown in
Table 8

Filename Group Content Overall Content
sampling dis Mean of the f(i)’s for that group Mean of all the f(i)’s to date
sampling obs Total observations for that group Total of all observations to date
sampling rfs RFs for the group RFs for all observations to date

Table 8: Group and Overall data (CSV files, Advanced Style)

25

(a) sampling dis.csv (b) sampling obs.csv

(c) sampling rfs.csv

Figure 17: Sampling CSV files - Advanced Style

16.3 TXT files

The TXT files are so simple (Figure 18) that they do not include even column headings.
They contain only the f(i)’s, simulated observations and Relative Frequencies (no
Pr(g|f)).

In the TXT files, observations are in I8 format, distributions and RFs are in E11.6, all
with one space as a separator.

26

(a) sampling dis.txt (b) sampling obs.txt

(c) sampling rfs.txt

Figure 18: Sampling TXT files

17 DEFAULTS.TXT

defaults.txt is intended to contain the answers to questions which most people either
would not be interested in, or would not usually want to alter. These questions could
rapidly become annoying if asked every time the program was run.

Because defaults.txt is much simpler than data.txt, error-reporting is minimal: either
something works or it produces a run-time error. If the latter then the cause of the
problem is easily spotted: usually either a text string has not been enclosed in quotes or
a non-integer numerical value has been used.

Some errors -usually involving nonsensical integer values- are easily detectable as errors;
the program will use standard values if one of these is detected.

Some items could (at least in theory) take unlimited integer values. For these, there is
no ‘nonsensical integer value’ which could be specified as part of the program. The user,
however, could voluntarily place limits on these and so -to give protection against gross
typing etc mistakes- is given the ability to give maximum acceptable values.

Each item has a Factory Setting, which is hardwired into the program. All items can be
reset to their factory settings by selecting item 999 from the opening menu.

27

NUMBER OF ITERATIONS TO BE USED

Each iteration corresponds to one distribution selected at random from the underlying
set. Specify the number here.

It is possible to alter the number of iterations within the program, but the number you
put here should –if chosen correctly for the types of problem you are normally involved
with– save you from having to do so most of the time. Just be careful not to use any
thousands separators etc.

If you rarely have an interest in anything apart from basic likelinesses then it should be
possible to reduce the default number of iterations to substantially fewer than the
Factory Setting: 100000 or fewer will often be good enough (for example, see
Figure 15). However, if the program runs fast enough for you then you should ask
yourself why you are reducing the number. On the other hand, if you are usually
interested in PDFs then you might find that an increase to substantially more than the
Factory Setting would be convenient.

If defaults.txt contains a value ≤ 0 the program uses 999,999 to act as a warning that
something is not right whilst still allowing the program to run.

Factory Setting: 750000

SEEDING THE RANDOM NUMBER GENERATOR

Option 1: Same seed every time

Option 2: Different seed every time.

There are two options:-

1. The program chooses the same seed every time it is run. This is always the same,
but you have no control over its value.

2. The program chooses a different1 seed every time it is run.

If defaults.txt contains any integer other than 1 then the program uses option 2.

Factory Setting: 2

WHETHER the CSV SAMPLING FILES ARE TO BE BASIC OR ADVANCED

Option 1: Basic files, showing just the basic data

Option 2: Advanced files, showing Group totals etc.

1Since computers work to a finite number of digits, there is always the remote chance that the program
will choose the same seed twice in succession. Depending upon the circumstances, the chances of this
happening could be as high as 1 in 200,000.

28

Sometimes you will want the sampling files to contain just the basic data (distributions,
observations, relative frequencies); all the other information such as line numbers,
status fields, group totals etc, can be a nuisance if you don’t really need them.

This item gives you the option to switch off just about everything except the data. You
will get:-

• column headings

• Pr(g|f)

• All the f(i)

• blank lines between groups

• An initial column of one (data line) or two (blank line) asterisks, to aid speedy
navigation from top to bottom and to enable the blank lines to be easily sorted
out.

Choose Option 1 to get just the basic data; Option 2 if you want all the other stuff.

Factory Setting: 2

THE MAXIMUM NUMBER OF DISTRIBUTIONS WHICH MAY BE SPECIFIED IN THE NEXT

ITEM

The next item asks for the number of distributions to be used in the sampling files.
There is no natural upper limit to this, which makes that item particularly vulnerable
to gross typing mistakes.

To give some protection, the user may specify an upper limit to the number of
distributions which may be specified in the next item. If a number larger than that
upper limit is entered, it will be reset to that upper limit.

If the maximum entered here is 0 or negative then no upper limit is imposed.

Factory Setting: 10000

THE NUMBER OF DISTRIBUTIONS WANTED IN THE SAMPLING FILES

Each time the program is run, a number of distributions meeting the problem-definition
is sent to the sampling files. This item specifies how many there should be.

If defaults.txt contains an integer ≤ 0 the program sends 100 distributions to the
sampling files.

Factory Setting: 100

29

BROKEN INTO GROUPS OF

The sampling files are broken into groups by the insertion of a blank line after every
n’th distribution. In addition, the CSV files show group-level figures if the Advanced
style is chosen. Insert the size of the groups (ie. the value of n) here.

A group size of 0 or less, or of more than the number of distributions, forces a single
group consisting of all the distributions.

Factory Setting: 0

HOW FREQUENTLY A NEW DISTRIBUTION IS TO BE CHOSEN

Option 1: Make every distribution a new distribution

Option 2: Choose a new distribution only at the start of each group, so

that all the distributions within a group are the same.

The analysis of experiments often assumes that there is only one generating distribution.
To model this, set all the distributions within each group to be the same (Option 2).

If defaults.txt contains any integer other than 2 the program uses option 1.

Factory Setting: 1

THE MAXIMUM NUMBER OF OBSERVATIONS GENERATED PER DISTRIBUTION WHICH MAY

BE SPECIFIED IN THE NEXT ITEM

The next item asks for the number of observations to be generated per distribution in
the sampling files. There is no natural upper limit to this, but the user may voluntarily
impose one here.

If the code used in the next item is 0 or -1 then no upper limit is imposed.

If the code used is negative (other than -1) then the negative of the same limit is
applied.

Factory Setting: 50

CODE GIVING THE NUMBER OF OBSERVATIONS GENERATED PER DISTRIBUTION

Each distribution sent to sampling dis.csv is used as a generating distribution to
simulate at least one observation. You specify the actual number of observations here
by giving an integer, n, which has the effect given by Table 9.

If n is negative, a random choice of the number of observations is made every time (ie.
it is not a ‘once-and-for-all’ decision).
Factory Setting: 0

30

n Number of observations simulated per distribution
1,2, . . . n

0 ω(g)
-1 chosen at random from {1,. . . , ω (g)}

-2,-3, . . . chosen at random from {1, . . . , -n}

Table 9: Specifying the number of observations to be simulated.

18 Odds and Ends

(An unordered list of things to remember and things which do not easily fit in
elsewhere.)

• For basic problems (no merging, contractions or Relative Frequencies; no given
data; required integram =′′1′′; 750,000 iterations.), run times using a 64-bit laptop
were as given in Table 10.

Underlying Degree, N
Set 2 5 10 25 50 75 100
B(N) 1 2 3 9 23 42 68
S(N) 2 3 5 13 32 60 115
R(N) 2 3 5 13 33 61 117
M(N) 2 3 7 18 47 89 172
U(N) 2 3 7 18 49 90 174

Table 10: Typical run times (seconds)

• If you are interested in only the sampling files then either specific the default
number of iterations in DEFAULTS.TXT to be 1, or give the lowest possible
multiple when asked during data-input. Doing so will produce the sampling files
as per normal, but will give a speedy-but-meaningless data-analysis.

• If you have been looking at any file but have forgotten to close it down before
running the program again then you will receive a run-time error or be thrown
back into Windows. Close the file and –if your system offers you the choice–
choose Retry. If it does not offer you this choice then you may need to restart
your computer.

• When using a spreadsheet to plot results, pay careful attention to the scale of the
vertical axis. Spreadsheets usually choose the scale so as to maximise the vertical
spread of the plotted points: this can cause the results to seem highly scattered
when they are in fact in agreement to several sig figs. See Figure 15 for an
example.

• To investigate the effects of the sample size of the given data, take advantage of
the fact that input relative frequencies are normalised before use, so they do not

31

actually have to be relative frequencies provided they are not negative. Do not
give any data as the input histogram but give it, instead, as input relative
frequencies; varying the sample size then does just that.

• In defaults.csv, if you choose to have a single group, by eg. selecting a group size
of 0, and also choose to have a new distribution only at the start of a group then
every entry in the sampling files will use the same distribution. However, that
distribution will be selected at random and you will not have any say in its choice.

To have just a single distribution, specified by you , throughout the whole of the
sampling files, when running the program, specify a contraction of magnitude
zero, centred on the required distribution.

19 Troubleshooting

The program freezes immediately after I have chosen Item 2 from the
opening menu, leaving the menu on the screen

You probably stopped the program on the previous run by using one of the emergency
numbers 911 or 999. These make data.txt unusable (see 8, page 10) so the program has
frozen while trying to read from it.

You will firstly need to clear the computer by restarting it. Then open data.txt: if it
starts with a message saying that it was formed when the previous run was finished
early, then that is the problem. You will need to run the program from the keyboard.

The program freezes soon after I have selected Item 2 from the opening
menu, leaving the message *** downloading of samples now completed ***
on the screen
You probably forced the program to stop on the previous run. This makes data.txt
unusable. Take the same action as for the previous problem.

I get a run-time error with the error number M6101

This is an under/over-flow problem. There are various possible causes:

1. The given histogram has too large a sample size, causing underflow. The
definition of likelinesses involves the factor fh (see Appendix A), so a large sample
size can lead to very small numbers. The program has been written to handle
numbers down to about 10−600, but this is sometimes not small enough.

If this should happen to you then the best you can probably do is reduce the
sample size of the given data, by inputting it as relative frequencies and then
reducing the sample size until you find one which works.

32

2. You have been experimenting with the program and have used a completely
unrealistic example which has a large h(i) associated with a very unlikely i. This
is equivalent to having a large number of observations of something that is very
unlikely to happen.

3. The required integram has too large a sample size. The calculation of M(g)
involves several factorials (again, see Appendix A), which can quickly exceed the
limits of double precision in the intermediate calculations even if the final value is
within limits. The program has been written to minimise this problem but it
cannot be completely avoided.

33

A Notation and Terminology

Let R+ be the non-negative reals, and N+ be the non-negative integers. For N ∈ N let
XN = {1, . . . , N}. N is called the degree.

Let G(N) = {g|g : XN → N+}, H(N) = {h|h : XN → R+}, so G(N) ⊂ H(N). The
elements of H(N) are called histograms on XN and those of G(N) integer-valued
histograms, shortened to integrams, on XN . The histogram h is identified with the point
(h(1), . . . , h(N)).

For h ∈ H(N), the sample size of h is ω(h) =
N∑
i=1

h(i).

For n ∈ N+, ΩN(n) = {g ∈ G(N)|ω(g) = n}. This is the set of all integrams of degree N
and sample size n. In particular, ΩN(ω(g)) is the set of all integrams with the same
sample size as g.

For g ∈ G(N), the Multinomial coefficient associated with g is

M(g) =
ω(g)!
N∏
i=1

g(i)!

.

Let f : XN →]0, 1] be such that
N∑
i=1

f(i) = 1. Then f is called a distribution on XN .

S(N) is the set of all such distributions. S(N) ⊂ H(N).

For g∈G(N), h∈ H(N) and P ⊂ S(N) where P 6= ∅, we define

LP (g|h) = M (g)

∫
f∈P

f gfh∫
f∈P

fh

where
∫

is the Daniell integral.

LP (g|h) is called the likeliness, over P, of g given h. Since P, g or h will usually be clear
from the context, this terminology is normally shortened by omitting appropriate terms.

h is called the given histogram, g the required integram and P the underlying set. More
generally, any non-empty subset of S(N) is called the underlying set in S(N).

The integram of degree N and sample size 0 is (0, . . . , 0), which is denoted by 0, or –if
greater clarity is needed– by 0N . We have LP (0|h) = 1 for all (h,P). LP (g|0) is written
as LP (g) .

If we roll a die and throw the number 2 then we have not only thrown a 2 once but have
also thrown 1, 3, 4, 5 and 6 zero times each. So we can think of ourselves as having

34

thrown the integram (0,1,0,0,0,0). Also, we have not actually thrown the number 2 but
have, rather, thrown the face labelled “2”. It is very convenient to adopt notation which
associates the symbol “2” with (0,1,0,0,0,0).

We define ′′i′′N to be that integram (x1, . . . , xN) for which xi = 1 but xn = 0 otherwise;
for example, ′′2′′6 = (0, 1, 0, 0, 0, 0). It is usually possible to write ′′i′′ rather than ′′i′′N
without introducing ambiguity. Importantly, f

′′i′′ = f(i) and M(′′i′′) = 1.

If P is a singleton set, P = {f}, then LP (g|h) = M (g) f g, which is denoted by
Pr (g|f, h): since this is independent of h the notation may be simplified to Pr (g|f);
however, the presence of the h, although technically unnecessary, can sometimes add
clarity.

Now let V ⊂ S(N). Then the likeliness of V, over P and given h, is

LP (V |h) =

∫
V ∩P f

h∫
P
fh

.

For x ∈ [0, 1] let Vx = {f ∈ S(N)|Pr(g|f) < x}. Then LP (Vx|h) is the likeliness, over P
and given h, of the set of those f ∈ P for which Pr(g|f) < x. We denote this by
LP (Pr(g|f) < x|h).

The function [0, 1]→ [0, 1] : x 7→ LP (Pr(g|f) ≤ x|h) is the expected CDF of Pr(g|f).

Likewise, if 0 ≤ x0 ≤ x1 ≤ 1 then we define LP (Pr(g|f) ∈ [x0, x1]|h) to be LP (V |h)
where V = {f ∈ P |Pr(g|f) ∈ [x0, x1]}. By covering [0,1] by cells in this way, we obtain
an expected frequency distribution for Pr(g|f).

35

B The Algorithms

B.1 The commoner underlying sets

The symbols representing the commoner underlying sets are given in Table 11

Symbol Meaning
S(N) The set of all distributions of degree N
R(N) The set of all ranked distributions of degree N:

f(1) > ... > f(N)
RR(N) The set of all reverse-ranked distributions of degree N:

f(1) < · · · < f(N)
M(A to B,N) The set of all unimodal distributions of degree N with

mode between A & B inclusive
M(m,N) M(m to m,N)
M(N) M(1 to N,N)
U(A to B,N) The set of all U-shaped distributions of degree N with

trough between A & B inclusive
U(m,N) U(m to m,N)
U(N) U(1 to N,N)
B(m,N) The set of bell-shaped distributions of degree N with a mode at m.
B(N) The set of bell-shaped distributions of degree N.
SD(c,N) For c ∈ XN−1, the set of all step-down distributions

of degree N with step at c:
i ≤ c < k ⇒ f(i) > f(k)

RSD(c,N) The set of all ranked step-down distributions of
degree N with step at c:
i < j ≤ c < k ⇒ f(i) > f(j) > f(k)

HML(c,d,N) The set of all High/Medium/Low distributions of
degree N with steps at c and d.

RHML(c,d,N) The set of elements of HML(c,d,N) with a ranked ‘top step’.

Table 11: The commoner underlying sets

B.2 Selection of f ∈ S(N)

Using the computer’s RAND function, select (N − 1) points in]0, 1[, and use them to
partition]0, 1[, resulting in N subintervals. Use the subinterval-lengths as the f(i),
randomising them, first, to reduce any biase in the selection process.

36

B.3 Selection of r ∈ R(N)

Let AN =


1 1

2
1
3

. . . 1
N

1
2

1
3

. . . 1
N

1
3

. . . 1
N

.
1
N

 .
Then φN : S(N)→ R(N) : f 7→ r where rT = ANf

T is a linear bijection.

Select f ∈ S(N) and then, starting with r(N) = 1
N
f(N) and working upwards,

construct r = φN(f).

B.4 Selection of f ∈ RR(N)

Select r ∈ R(N) and then set f(i) = r(N + 1− i).

B.5 Selection of f ∈ RSD(c,N)

Select r ∈ R(N) and randomise {r(c+ 1), . . . , r(N)}.

B.6 Selection of f ∈ SD(c,N)

Select f ∈ RSD(c,N) and randomise {f(1), . . . , f(c)}.

B.7 Selection of f ∈ RHML(c, d,N)

Select f ∈ RSD(d,N) and randomise {f(c+ 1), . . . , f(d)}

B.8 Selection of f ∈ HML(c, d,N)

Select f ∈ RHML(c, d,N) and randomise {f(1), . . . , f(c)}

B.9 Selection of f ∈M(m,N)

The set of all injective unimodal distributions of degree N which have a mode of m is
denoted by M(m,N). The practical underlying set, M(A to B,N) is formed as the union
of M(A,N), . . . ,M(B,N). [The set of non-injective unimodal distributions has measure
zero.]

The basic procedure for forming f ∈M(m,N) is to select r ∈ R(N) and then permute
the r(i) to produce an unimodal distribution with mode m. The algorithm needs to
determine how that permutation is to be carried out.

By considering the selection of the (m-1) values to the left of m out of the (N-1)
available (since r(1) 7→ m), it follows that there are N−1Cm−1 unimodal permutations
of r which have a mode at m.

37

Place r(1), then r(2), then r(3) etc as follows:-

1. Since it must be that r(1) 7→ m, place r(1) at m.

2. Since the distribution is to be unimodal, r(2) must be placed at either (m-1) or
(m+1). In general, at each stage, the already-placed r(i)s must form a contiguous
block, with the next value being placed at either end; we need to choose which
end.

Let there be L unfilled places to the left of the block and R unfilled places to the
right. Then, of the L+RCL possible ways in which the remaining (L+R) values
may be placed, the number which have the next value to the left is L+R−1CL−1, so
the proportion which have the next value to the left is the ratio of L+R−1CL−1 to

L+RCL, which is
L

L+R
.

So, when deciding where to place the next value, use RANDOM() to select

Q ∈]0, 1[and then place the value to the left if Q <
L

L+R
.

B.10 Selection of f ∈M(A to B,N)

Select r ∈ R(N).

Since we know the number of unimodal permutations with a given mode, we can count
the total number which have a mode of at least A and at most B, and then find the
proportions of that total which have each of the permissible modes in the range AtoB.
We can then set those proportions as subintervals of [0, 1] and use RANDOM to select
one of them as the mode, m. Having selected that mode, we can then proceed as with
M(m,N).

B.11 Selection of f ∈ U(m,N) and f ∈ U(A to B,N)

The algorithms for the selection of U-shaped distributions are identical to those for
Unimodal distributions with one exception. The construction of an Unimodal
distribution starts with the selection of an element of R(N), but that of a U-shaped
distribution starts with the selection of an element of RR(N).

B.12 Merge Blocks

Say the merge block covers columns M, . . . , N , so that we know h(1), . . . , h(M − 1). We
reconstruct h(M), . . . , h(N) from the merge block.

Select f from the underlying set (of degree N), normalise (f(M), . . . , f(N)) so that they
become a distribution of degree N −M + 1. Use that distribution to generate the
appropriate number of observations. Append those generated observations to
(h(1), . . . , h(M − 1)) to form the given histogram, and then continue with the analysis.

Do all of the above with every selection of a distribution.

38

B.13 Using a distribution to generate a simulated observation

Having selected f from the underlying set of degree N, use the points
f(1), f(1) + f(2), . . . , f(1) + · · ·+ f(N − 1) to partition [0,1] into N subintervals. Label
those subintervals 1, . . . , N from left to right, and use RAND to select one of them.

B.14 Expected frequency distributions and CDFs

The program reads the upper and lower limits of the interval of interest from data.txt,
and partitions it into 20 subintervals by using 21 equally-spaced points. Those 21 points
partition [0,1] into usually 22 subintervals (including the two, not of the same length,
outside the interval of interest).

Having found Pr(g|h), the program looks to see which of those 22 intervals it falls into,
and increases an accumulation-register for that interval by fh. At the end of the
iterations, it normalises the contents of the accumulation-registers, to produce the
expected frequency distribution. The expected CDF is the CDF of that expected
frequency distribution.

C Standard analytically-solvable problems

a. The Multinomial Theorem gives the likeliness of g given h when the underlying set is
singleton.

b. The Law of Succession gives the likeliness, over S(N), of g given h when ω(g) = 1.

c. The Combination Theorem gives the likeliness, over S(N), of g given h when h = 0.

d. The Integram Theorem gives the likeliness, over S(N), of g given h when g & h are
both integrams.

For details of a-d, see [1]; for details of e, see [2].

References

[1] Lovegrove,R.,(2013), ’The Fundamentals of Likelinesses’, Lovegrove Mathematical
Services Research Report 2013-02, London, December 2013

[2] Lovegrove,R.,(2013), ’Ranked Distributions on Finite Domains’, Lovegrove
Mathematical Services Research Report 2013-02, London, December 2013

39

